
Journal of Computational Physics 229 (2010) 4544–4553
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Generalized Foldy-Lax formulation

Kai Huang a,*, Knut Solna b,1, Hongkai Zhao b

a Department of Mathematics, Florida International University, Miami, FL 33199, USA
b Department of Mathematics, University of California at Irvine, Irvine, CA 92697-3875, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 November 2009
Received in revised form 21 January 2010
Accepted 21 February 2010
Available online 7 March 2010

Keywords:
Helmholtz equation
Numerical wave propagation
Foldy-Lax
Boundary integral equation
Scattering
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.02.021

* Corresponding author.
E-mail address: khuang@fiu.edu (K. Huang).

1 K.S. was also partly supported by NSF grant DMS
We present a method for numerical wave propagation in a heterogeneous medium. The
medium is defined in terms of an extended scatterer or target which is surrounded by
many small scatterers. By extending the classic Foldy-Lax formulation we developed an
efficient algorithm for numerical wave propagation in two dimension. In the method that
we set forth multiple scattering among the point scatterers and the extended target is fully
taken into account via a boundary integral formulation coupled with the Foldy-Lax formu-
lation. This formulation forms the basis for our numerical procedure.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The original Foldy-Lax formulation gives a model for the scattered wave-field, at a particular frequency, in the case of a
collection of point scatterers. In this idealized situation of a cluttered medium the scattered field derives from the solution of
a linear system. Therefore, despite a very complicated scattering picture with multiples of all orders, the scattered field can
be computed very effectively. In many situations one wishes however to simulate waves in a cluttered medium with an
imbedded extended scatterer. This is for instance the case when one wants to use the numerical scheme for assessment
of schemes for imaging in a cluttered environment. Then one typically needs to solve a forward problem corresponding
to numerical wave propagation in the heterogeneous medium. This is a challenging task that in general involves phenomena
on many scales, in particular the scales of the medium variations, the wave-length and the propagation distance. In the ap-
proach we take here the medium clutter is modeled by a set of point scatterers and the extended object by a connected re-
gion with a smooth boundary. We developed here an efficient numerical algorithm by extending the original Foldy-Lax
formulation to this case with an embedded extended scatterer. We remark that in the motivating application to imaging
it is important to resolve the geometry of the extended target and the effect it has on the scattered field. In the case with
only an extended scatterer present the scattered field can be computed effectively using various numerical methods, while
in the case of only point scatterers the Foldy-Lax method can be used. The challenge here is to combine methods such that
the multiple scattering in between the extended scatterer and the multiple scatterers is taken into account, ideally without
increasing significantly the computational complexity relative to the original algorithms.

In our approach we use the extended-boundary condition method (EBCM), a boundary integral formulation, to compute
the scattering operator (matrix) associated with the extended target with Dirichlet boundary condition. The method can
generalize to other boundary conditions without difficulty. Then, we derive a coupled linear system to capture the multiple
. All rights reserved.
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Fig. 1. Physical set-up of the problem. A source generates a wave that is impinging on a heterogeneous medium consisting of an extended scatterer
embedded in a background medium of point scatterers.
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scattering between the extended target and the collection of point scatterers. We consider the model problem in 2D only, it is
possible to generalize to three dimension case.

A main aspect of our approach is that the free space Green function can be used for propagation in between the scatterers.
As a consequence we do not have to solve any partial differential equation numerically and we can deal with long propaga-
tion distances and a large number of point scatterers, which is important when we are dealing with phenomena in the far
field.

The outline of the paper is as follows. In Section 2 we briefly review the Foldy-Lax formation for point scatterers and in
Section 3 the extended-boundary condition method for extended targets. In Section 4 we present our approach which inte-
grates the two methods. Finally, in Section 5, we present some numerical results. Throughout the paper we consider a scalar
wave field in the frequency domain so that the governing equation is the Helmholtz equation. The problem set-up is illus-
trated in Fig. 1. A time-harmonic source generates a wave that is impinging on a heterogeneous medium consisting of an
extended scatterer embedded in a background medium of point scatterers. Our main objective is to compute the resulting
scattered field.

2. Foldy-Lax system for point scatterers

We consider here a collection of N point scatterers in a homogeneous medium and describe how the Foldy-Lax method
can be used to model the scattered field, see [3,5–7] for a more detailed description. Let /incðrÞ denote the incident wave-field
generated by the source. Each scatterer will now have impinging upon it this incident wave in addition to the total scattered
field from all the other scatterers.

Given a single scatterer at rj, and a field /E
j (the exciting field) impinging upon it, the scattered field from it and evaluated

at r is then modeled by:
/j;scaðrÞ ¼ rjgðr; rjÞ/E
j ;
where rj is the scattering amplitude and gðr; r0Þ is the free space Green function satisfying the Helmholtz equation:
ðr2 þ k2Þgðr; r0Þ ¼ �dðr� r0Þ:
In our notation, we suppress the dependence of the Green function on the wave number k. For N point scatterers at
r1; r2; . . . ; rN , the scattered field is given by:
/scaðrÞ ¼
XN

j¼1

rjgðr; rjÞ/E
j ; ð1Þ
where /E
j is the exciting field at point scatterer rj. The exciting fields at the point scatterers are now coupled via the linear

system:
/E
j ¼ /incðrjÞ þ

XN

l¼1;l–j

rlgðrj; rlÞ/E
l : ð2Þ
We rewrite (2) in the following form:
/j ¼ bj þ
XN

l¼1; l – j

Bjl/l;
where /j ¼ /E
j ; Bjl ¼ rlgðrj; rlÞ and bj ¼ /incðrjÞ.

Define now the matrix Z:
Zij ¼
1; if i ¼ j;
�Bij; if i – j:

�
ð3Þ
Then (2) is in the matrix form:
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Z/ ¼ b; ð4Þ
where / and b are vectors with /l and bl as components, respectively. It is clear that Z is invertible for the rj’s sufficiently
small.

After solving the above linear system, we obtain the scattered field from (2).
3. Extended-boundary condition method

We introduce next the Extended-Boundary Condition Method for computing the scattered field from an extended target
in a homogeneous medium. We let D be a bounded simply connected domain which define the support of the scatterer and
we shall here consider the case with two space dimensions. The smooth boundary of D is denoted S ¼ @D. We then consider
the following scalar wave equation in the exterior of D:
ðr2 þ k2Þ/ðrÞ ¼ qðrÞ in R2 n D; ð5Þ
/ðrÞ ¼ 0 on S: ð6Þ
Note that we assume a Dirichlet boundary condition at the target. That is, for simplicity we choose here a sound-soft obsta-
cle, however, the method we shall introduce generalizes to other boundary conditions.

By applying Green’s theorem to the above Helmholtz equation, we obtain the following boundary integral equations:
/incðrÞ �
Z

S
ds0n̂ � ½gðr; r0Þr0/ðr0Þ� ¼ 0; r 2 D; ð7Þ

/incðrÞ �
Z

S
ds0n̂ � ½gðr; r0Þr0/ðr0Þ� ¼ /ðrÞ; r 2 R2 n D; ð8Þ
where we have used the expression
/incðrÞ ¼ �
Z

R2nD
dA0gðr; r0Þqðr0Þ;
for the incoming field generated by the source, and n̂ is the exterior unit normal direction. We can now first solve for n̂ � r/
on the boundary S from Eq. (7), and then in a second step obtain the scattered field from (8).

The extended-boundary-condition method, developed by Waterman [9,10] is an alternative to solving the above bound-
ary integral equation. In this method, the integral equations are imposed not on the boundary S, but on some extended
boundary S1 and S2 away from S. The boundary S2 is a circle inside of the domain D, while S1 is a circle which contains
the region D. We choose the origin of the coordinate system to be inside of S2 such that jrinj < jrj < jroutj, for
rin 2 S2; r 2 S; rout 2 S1. This configuration is illustrated in Fig. 2.

In a homogeneous medium, by the additional theorem [4], the Helmholtz Green’s function can be expanded as:
gðr; r0Þ ¼ i
X1

n¼�1
SnðrÞRnðr0Þ; forjrj > jr0j; ð9Þ
where Sn represents an outgoing wave cylindrical harmonic, and Rn is the real part of Sn : Rn ¼ RealSn.
We have explicitly, for r ¼ ðjrj;aÞ in polar coordinates
Fig. 2. The figure shows the physical boundary, S, of the extended scatterer and the ‘‘extended boundary” S1 and S2.
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n ¼ 0; S0ðrÞ ¼ Hð1Þ0 ðkjrjÞ=2;
R0ðrÞ ¼ J0ðkjrjÞ=2;

n < 0; SnðrÞ ¼ Hð1Þn ðkjrjÞ cosðnaÞ=
ffiffiffi
2
p

;

RnðrÞ ¼ JnðkjrjÞ cosðnaÞ=
ffiffiffi
2
p

;

n > 0; SnðrÞ ¼ Hð1Þn ðkjrjÞ sinðnaÞ=
ffiffiffi
2
p

;

RnðrÞ ¼ JnðkjrjÞ sinðnaÞ=
ffiffiffi
2
p

;

where Hð1Þn and Jn are Hankel function and Bessel functions of the first kind, respectively. Using reciprocity we find that the
incident wave from a point source at r0 can be expanded as:
/incðrÞ ¼ gðr; r0Þ ¼ i
X

n

Snðr0ÞRnðrÞ �
X

n

anRnðrÞ;
so that
an ¼ iSnðr0Þ: ð10Þ
We moreover expand the unknown on the boundary S as
n̂ � r/ðrÞ ¼
X

m

bmn̂ � rRmðrÞ; r 2 S; ð11Þ
We next describe the approach that gives these unknowns in terms of the incident wave. First, on the interior boundary
S2, we substitute the above expansion into Eq. (7):
X

n

anRnðrÞ ¼ i
Z

S
ds0
X

m

bmn̂ � r0Rmðr0Þ
X

n

Snðr0ÞRnðrÞ:
From the orthogonality of the cylindrical harmonics, we then have that:
an ¼ i
X

m

bm

Z
S

ds0½Snðr0Þn̂ � r0Rmðr0Þ� � i
X

m

bmQ nm; ð12Þ
where
Q nm ¼
Z

S
ds0½Snðr0Þn̂ � r0Rmðr0Þ�: ð13Þ
Once the above linear system (12) is solved for bm, the scattered field can be found by the following. On the exterior
boundary S1, we write
/scaðrÞ ¼ /ðrÞ � /incðrÞ �
X

n

fnSnðrÞ: ð14Þ
Then we readily deduce from (8) and (9) that
fn ¼ �i
Z

S
ds0Rnðr0Þn̂ �

X
m

bmr0Rmðr0Þ
" #

¼ �i
X

m

bm

Z
S

ds0½Rnðr0Þn̂ � r0Rmðr0Þ� ¼ �i
X

m

bmReal½Q nm�: ð15Þ
Consequently, we have
a ¼ iQ � b
f ¼ �iReal½Q � � b ¼ �Real½Q � � Q�1 � a
where a, b and f are vectors with an; bn and fn as components, respectively, and Q is a matrix with elements Q mn. We
remark here that what was important for us here was the existence of S1 and S2 not their particular radii, however, we
will see below that a small condition number in the sense that these radii are close give a fast convergence for the
numerical method.

Note that the matrix Q is of infinite-dimensional, in numerical simulation, it is truncated to finite-dimensional matrix.
We remark that if we want to compute the scattered field from another point source we need only recompute a using (10)

while Q is not affected. At the internal resonance of the cavity formed by S, the matrix Q is ill-conditioned. This problem can
be overcome by using a complete set to expand the surface sources, see [11] for details. Here, we exclude situations with
internal resonances for simplicity.

We now define the scattering matrix T that relate the scattered wave amplitude to the incoming wave amplitude
T ¼ �Real½Q � � Q�1

f ¼ T � a:
ð16Þ
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Note that once the scattering matrix T for one target is found, it can be used collectively with the scattering matrices of
the other scatterers to construct recursively the scattered wave field by many targets [11].

The EBCM is also known as the null-field approach, and the convergence has been studied in [1,2,8].
4. The coupled scattering system

We finally consider multiple scattering between the extended target and the point scatterers. In this case we can write the
scattered field as
/scaðrÞ ¼
XN

j¼1

rjgðr; rjÞ/E
j �

Z
S

ds0n̂ � ½gðr; r0Þr0/Eðr0Þ�; r 2 R2 n D; ð17Þ
where we denoted the exciting ‘fields’ at the point scatterers by /E
j and at the extended scatterer by /Eðr0Þ, respectively. Be-

low we shall obtain a coupled infinite dimensional system for the exciting field at the point scatterers and the coefficients in
a cylindrical harmonics expansion of the exciting field at the extended scatterer. The numerical implementation in the Sec-
tion 5 is based on a finite-dimensional approximation of this system.

For jrj > maxjjrjj we write the scattered field by all scatterers as
wF
out ¼

X
n

/F
outðnÞSnðrÞ; ð18Þ
and the incoming field due to the source by
wF
inc ¼

X
n

/F
incðnÞRnðrÞ: ð19Þ
We now assume

Assumption 4.1. minjjrjj > maxr2Sjrj.

This means that we can define a non-empty annulus outside of the extended scatterer and inside of the point scatterers.
For r such that ðmax jr0j for r0 2 SÞ < jrj < minjjrjj we write the incoming field due to the source and scattering off the point
scatterers as
wN
inc ¼

X
n

/N
incðnÞRnðrÞ; ð20Þ
and the field scattered by the extended scatter as
wN
out ¼

X
n

/N
outðnÞSnðrÞ: ð21Þ
We now introduce the linear operators as illustrated in Fig. 3:
TRR ¼ Iþ AZ�1C; ð22Þ
TSS ¼ IþHZ�1P; ð23Þ
TRS ¼ AZ�1P; ð24Þ
TSR ¼ HZ�1C; ð25Þ
TX ¼ �RealðQ ÞQ�1; ð26Þ
with
Anj ¼ irjSnðrjÞ; Hnj ¼ irjRnðrjÞ; Cjn ¼ RnðrjÞ; Pjn ¼ SnðrjÞ:
We then have the system
target

scatterer

source

o TT SRRR

TSS

TSR

Fig. 3. Multiple scattering operators.
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/N
inc

/F
out

" #
¼

TRR TRS

TSR TSS

� �
/F

inc

/N
out

" #
; ð27Þ
moreover, we have
/N
out ¼ TX/N

inc: ð28Þ
This gives then
/N
inc ¼ TRR/

F
inc þ TRSTX/N

inc;
so that
/N
inc ¼ ðI � TRSTXÞ�1TRR/

F
inc; ð29Þ

/F
out ¼ ðTSR þ TSSTXðI � TRSTXÞ�1TRRÞ/F

inc: ð30Þ
We give the detailed derivation in Appendix A.
5. Numerical examples

In this section, we will show four numerical examples. We used 31 terms in the wave function expansions,
n ¼ �15; . . . ;15, in these simulation. Consequently, the size of matrix Q is 31� 31. With n ¼ 15, the error in the expansion
in (9) is less than 10�10 for our test examples.

The wavelength is chosen as the unit in our examples and figures. We used two types of extended target. The first target is
a disk, the second is a half disk plus a cone, see Fig. 4. The radius of disk is three wavelengths.

In the first example in Fig. 5, the extended target is the disk. The source is 12 wavelength away from the left side of the
target. We put one point scatterer on top of the target (three wavelengths away). The left figure plots then the wave field,
while the right figure plots the difference wave field with or without the point scatterer. We see clearly that the difference
field contains strong reflections from the top part of the target due to multiple scattering between the point scatterer and the
extended target. This information can be used to image the top part of the target.

In the second example, in Fig. 6, the setting is as before, but the extended target is the Target 2. We remark that we do not
evaluate the wave field inside the disk since we are interested in the scattered field. We see that the difference field has a
different pattern from Example 1. This phenomenon can be exploited for classification purposes.
Fig. 4. Geometries of the extended targets.
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Fig. 5. Example 1; Target 1 and one point scatterer.
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Fig. 6. Example 2; Target 2 and one point scatterer.
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Fig. 7. Example 3; Target 2 and 200 point scatterers.
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Fig. 8. Example 4. Source in far field.
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In the third example, in Fig. 7, we randomly put 200 point scatterers surrounding the Target 2. In this case the difference
field corresponding to specular reflection from the target and scattering from the tip of the cone (as in the previous example)
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is relatively strongest. We remark that with our approach we can easily handle a large number of point scatterers, e.g.
thousands.

In the last example, in Fig. 8, the source is 1000 wavelengths away from the Target 2. There are 10 random point scatterers
surrounding the target. Note how the difference field gives information about the location of the point targets and also infor-
mation about the geometry of the extended target via the point scatterers. The example illustrates that we easily can resolve
far field phenomena. The main computation is the formation of the matrix Q, in which we used adaptive Simpson
quadrature.

We conclude that we have been able to calculate the scattered fields in the Foldy-Lax formulation in the presence of an
extended scatterer, a situation corresponding to a strong separation of scales and where using discretization of the Helm-
holtz equation would have been very expensive.

6. Conclusion

We have developed an efficient numerical algorithm to simulate multiple scattering among point scatterers and extended
targets in 2D. In our algorithm the free space Green’s function is used and no partial differential equations need to be dis-
cretized and solved. The main computational cost is the formation of the matrix Q. In our approach we can easily deal with
long propagation distances and large number of point scatterers. Extension to 3D is being studied.
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Appendix A. Generalized Foldy–Lax system

In this appendix, we derive the generalized Foldy–Lax formulation that gives the exciting field at the extended scatterer
and the point scatterer. The excited field can then be used to compute the scattered field at any point in the domain.

Let the exciting field at the scatterers be denoted by
/E
j ¼ /ðrjÞ; 1 6 j 6 N:
The impinging (far field) source field may for instance be generated by a set of point sources. We write it as in (19):
wF
incðrÞ ¼

X
n

/F
incðnÞRnðrÞ:
The incoming field on S2, see Fig. 3, is now
/incðrÞ ¼
X1

n¼�1
RnðrÞ/F

incðnÞ þ
XN

j¼1

rj/
E
j gðr; rjÞ ¼

X1
n¼�1

RnðrÞ/F
incðnÞ þ i

XN

j¼1

rj/
E
j

X1
n¼�1

SnðrjÞRnðrÞ

¼
X1

n¼�1
/F

incðnÞ þ
XN

j¼1

Anj/
E
j

 !
RnðrÞ ¼ RðrÞ � ð/F

inc þ A/EÞ;
with
Anj ¼ irjSnðrjÞ:
We then use (7) and (11) to find for r 2 S2
ð/F
inc þ A/EÞ � RðrÞ ¼ i

X
m

bm

Z
S

ds0
X1

n¼�1
½Snðr0Þn̂ � r0Rmðr0Þ�RnðrÞ ¼ iQb � RðrÞ;
and in view of the orthogonality of the cylindrical harmonics
/F
inc þ A/E ¼ iQb; ð31Þ
which generalizes the relation (12).
Next, let jrj > maxr2Sjrj and write the field scattered by the extended scatterer as
/scaðrÞ ¼
X1

n¼�1
f X
n SnðrÞ;
then we have as in (15)
fX ¼ �iRealðQ Þb;
with b defined as in (11). In view of (31) we then find
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fX ¼ �RealðQ ÞQ�1ð/F
inc þ A/EÞ: ð32Þ
The exciting field at the scatterers can now be identified as
/E
j ¼ RðrjÞ � /F

inc þ
XN

l¼1–j

rlgðrj; rlÞ/E
l þ

X1
n¼�1

f X
n SnðrjÞ; 1 6 j 6 N:
We write these relations in the form
Z/E ¼ C/F
inc þ PfX

; ð33Þ
for Z defined in (3) and
Cjn ¼ RnðrjÞ; Pjn ¼ SnðrjÞ:
From (32) and (33) we then find
fX ¼ �RealðQ ÞQ�1ð/F
inc þ AZ�1ðC/F

inc þ PfXÞÞ;
so that
fX ¼ ½Iþ RealðQ ÞQ�1AZ�1P��1ð�RealðQ ÞQ�1ðIþ AZ�1CÞÞ/F
inc:
Recall the operators introduced in Fig. 3 and below:
TRR ¼ Iþ AZ�1C;

TX ¼ �RealðQ ÞQ�1;

TRS ¼ AZ�1P;
then we have
fX ¼ ½I� TXTRS��1TXTRR /F
inc ¼ TX ½I� TRSTX ��1TRR /F

inc:
Finally, we derive the expression for the scattered field that is generated by the exciting field at both the point scatterers and
the extended scatterer. Let the point of field evaluation, r, be such that jrj > maxjjrjj. The field generated by the exciting field
at the scatters is
/P
sca ¼

XN

j¼1

/E
j rjgðr; rjÞ ¼

XN

j¼1

/E
j rj

X1
n¼�1

iSnðrÞRnðrjÞ ¼
X1

n¼�1

XN

j¼1

Hnj/
E
j

 !
SnðrÞ �

X1
n¼�1

f P
n SnðrÞ;
for
Hnj ¼ irjRnðrjÞ:
The total scattered wave-field coefficients are then
fX þ fP ¼ fTX ½I� TRSTX ��1TRR /F
inc þHZ�1ðC/F

inc þ PfXÞg ¼ fTX ½I� TRSTX ��1TRR þHZ�1CþHZ�1PTX ½I� TRSTX ��1TRRg/F
inc:
We again use a notation as in Fig. 3:
/F
out ¼ fX þ fP

;

TSS ¼ IþHZ�1P; TSR ¼ HZ�1C;
to obtain
/F
out ¼ ðTSR þ TSSTX ½I� TRSTX ��1TRRÞ/F

inc;
which is (30).
We finally turn our interest to the total field impinging on the extended scatterer. We write for r < minjjrjj
/incðrÞ ¼
X1

n¼�1
/N

incðnÞRnðrÞ
and have then
/N
inc ¼ ð/

F
inc þ A/EÞ ¼ ð/F

inc þ AZ�1C/F
inc þ AZ�1PTX ½I� TRSTX ��1TRR /F

incÞ ¼ ðTRR þ TRSTX ½I� TRSTX ��1TRRÞ/F
inc

¼ ½I� TRSTX ��1TRR/
F
inc;
which is (29).
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